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A resonant test-field model of gravity waves 
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In this paper we propose an ‘irreversible’ resonant test-field (RTF) model to describe 
the statistical fluctuations of gravity waves on deep water driven by a turbulent wind 
field. The non-resonant interactions in the gravity-wave Hamiltonian are replaced 
by a Markov process in the equation of motion for the resonantly interacting gravity 
waves, i.e. Hamilton’s equations are replaced by a Langevin equation for the RTF 
waves. The RTF models the irreversible energy-transfer process by a Fokker-Planck 
equation for the phase-space probability density, the exact steady-state solution of 
which is determined to be non-Gaussian. An H-theorem for the RTF predicts the 
monotonic approach to the asymptotic steady state near which the transport 
properties of the field are studied. The steady-state energy-spectral density is 
calculated (in some approximation) to be kP4.  

1. Introduction 
In  this paper we propose an ‘irreversible’ resonant test field (RTF) model to 

describe the statistical fluctuations of gravity waves on deep water. This model 
implements a Markov approximation for the statistics of the random gravity wave 
field and includes the energy flux from the turbulent wind field, the resonant 
interaction among the gravity waves and the non-resonant wave-wave interactions 
acting as a ‘heat bath. ’ The RTF model is the logical successor to the linear Gaussian 
wave fields used previously to describe the evolution of waves on deep water using 
weak-interaction theory (see e.g. Hasselmann 1962, 1963, 1967 ; Valenzuela & Laing 
1972; Weber & Barrick 1977a, b ) .  In these and other studies, the statistics of the 
nonlinear water waves were assumed to be a known rather than a derived property 
of the field. In  the present analysis, the wave dynamics are used to determine the 
statistics of the gravity wave field, and consequently their statistics cannot be known 
a priori. Hasselmann (1967) has argued that a random linear wave field can be 
regarded as Gaussian and that weak nonlinear interactions will not counteract the 
linear tendency for the wave field to be Gaussian. This contention contradicts the 
generalization of a theorem due to Doob and proven by Lax (1966a) which states: 
a random process that is Gaussian and Markovian must be a linear, Fokker-Planck 
process. Thus one must relinquish either Gaussianity or nonlinearity in order to 
describe water waves as a Markov random process. 

In the weak-interaction theory of water waves, the observables a t  the ocean surface 
are expressed in Fourier series. An individual linear water wave is labelled by a wave 
vector k, a frequency wk and has a mode amplitude C,. In a linear wave field these 
mode amplitudes are constant in time. In a weakly nonlinear wave field the wave-wave 
interactions couple these modes together, thereby providing a mechanism for energy 
and momentum exchange and the mode amplitudes become time dependent. 
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Zakharov (1968) was the first to show that an isolated field of gravity waves is a 
conservative Hamiltonian system, so that the evolution of the mode amplitudes are 
given by Hamilton’s equations of motion. The Hamiltonian for the gravity-wave 
system is a series in which the nonlinear terms appear as products of the mode 
amplitudes. These interactions induce a variation in both the amplitudes and phases 
of the linear waves which is much slower than the harmonic variation of the linearized 
system. 

The interactions in an arbitrary Hamiltonian system can be separated into those 
that are resonant and those that are non-resonant (for a complete discussion see e.g. 
Moser 1973). It has long been assumed that the resonant interactions dominate the 
evolution of water waves (see e.g. Phillips 1960; Longuet-Higgins 1962 ; Benney 
1962), so that non-resonant interactions were either treated in perturbation theory 
(see e.g. Watson & West 1975), or ignored entirely. The non-resonant interactions 
were thought to be of secondary importance because these interactions result in many 
changes of sign of a wave-wave coupling in the characteristic time interval for the 
mode amplitude to change sensibly. We argue in $2 that this rapid oscillation can 
be replaced by a statistical fluctuation driving the k-wave. The model equation of 
evolution for the k-wave therefore consists of the resonant interactions and an 
additive fluctuating force mimicking the dynamics of the non-resonant interactions. 
This partitioning of effects suggests a Langevin description of the surface waves which 
is similar in spirit to the Langevin description for internal-wave dynamics used by 
Pomphrey, Meiss & Watson (1980). However, because a given wave can in general 
participate in both a resonant interaction with some waves and a non-resonant 
interation with others, we introduce a two-field model. The first field consists of test 
waves that can interact resonantly among themselves. This has been one of the most 
successful models of the nonlinear interactions used in many-body systems in the past. 
The second field consists of waves that interact non-resonantly among themselves 
and which are a t  most linearly coupled to the resonant test-wave field. West ( 1 9 8 2 ~ )  
has shown that this two-field model can be represented by a nonlinear Langevin 
equation for the test-wave modes in the Markov limit. 

The Langevin equation description of the gravity wave field is a nonlinear 
stochastic rate equation whose analytic solution for an arbitrary initial configuration 
of waves is not known. The fluctuations in the Langevin equation arise from two 
sources in the present model: (1)  the non-resonant interactions in the wave field, and 
( 2 )  the turbulent air flow in the region of the sea surface. The turbulent air flow would 
be sufficient to generate fluctuations in the dynamic response of the sea surface; 
however, there is no known air-sea coupling mechanism that will dissipate the 
surface-wave energy. The dissipation of surface-wave energy is necessary to provide 
the observed asymptotic statistical steady state for the gravity-wave field. In  the 
present model the average of the fluctuating flux in the Langevin description of the 
test-wave field provides a dissipative current which eventually balances both the 
energy flux from the wind field and that transferred from other regions of the 
spectrum by the wave-wave interactions. The development of this steady state is 
discussed in $ 3. 

In an evolving field of water waves, the statistics evolve coincidentally with the 
amplitudes and phases of the individual modes. It is the evolution of the statistics 
which determines how the physical observables are transported in space and time. 
We determine how the statistics evolve without constructing a hierarchy of cumulant 
transport equations. A hierarchy method based on singular-perturbation theory has 
been developed by Benney & Saffman (1966), Benney & Newell (1967) and Newell 
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(1968). We avoid this approach by replacing the nonlinear stochastic rate equations 
by the phase-space equation of evolution for the two-time-point conditional 
probability density for the gravity-wave field. The two-point probability density 
function describes an ensemble of possible paths of evolution realizable by the RTF 
in phase space and, since the wave field is assumed to be Markovian, all the statistical 
information is contained in this two-point probability density. This assumption is the 
next logical step beyond the statistical hypothesis of Gaussian mode amplitudes made 
by other investigators since this latter assumption only concerns the single-point 
probability density. 

The phase-space equation governing the evolution of the probability density is the 
Fokker-Planck equation. Although we cannot solve this equation for the full 
time-dependent probability density, an exact steady-state solution is obtained. The 
steady-state probability density is found to be non-Gaussian, and estimates of the 
asymptotic energy spectral density based on this distribution are found to agree with 
the laboratory and field data, as compiled, for example, by Kitaigorodskii (1970) and 
Mitsuyasu (1975). For gravity waves the spectrum is determined to be proportional 
to kP4. This is the first dynamic model which yields this spectrum. 

2. The equations of motion 
In this section we describe the motion of the surface of an idealized ocean, i.e. we 

treat the ocean as a large basin of water and use the equations of motion for an 
inviscid, irrotational fluid described by a velocity potential $(x, z, t )  and surface 
deflection z = [(x, t ) .  The basin is assumed to be large in lateral extent with horizontal 
coordinates x and very much deeper than the longest characteristic scale of the 
surface motion. These two assumptions allow us to ignore the effect of the fixed 
boundaries of our basin on the motion of the surface and indeed to separate the motion 
of the surface completely from the interior fluid motion. Zakharov (1968) has 
demonstrated that the surface deflection [(x, t )  and the velocity potential $&, t )  at 
the free surface of the fluid constitute a set of canonical field variables and that the 
equations of motion of this surface follow from Hamilton’s principle of least action. In 
terms of these canonical variables the Hamiltonian for the gravity-wave field can be 
written 

where e is an ordering parameter and the subscript on H j  indicates the order of the 
product of the canonical field variables in this piece of the Hamiltonian (for details 
see e.g. Monin, Kamenkovich & Kort 1974; Broer 1974; Miles 1977; Milder 1977). 

As in West (1 982 b ; hereinafter referred to as Part 1 ) we find i t  convenient to express 
the equations of motion in terms of the linear eigenmode amplitudes of the fluid 
surface. For the present isolated system these are just the Fourier mode amplitudes 
and constitute a canonical transformation from the field variables [c(x, t ) ,  ~LJX, t ) ]  to 
the set of canonical mode amplitudes {ck( t ) } .  The equations of motion for the gravity- 
wave field are given by aH 

(2.2) 

Gk(t)+iwkCk(t) = Tk(C,t) .  (2.3) 

6 - - i A ,  
ac,* k -  

and using the series expansion for the Hamiltonian (2.1) we obtain 

The function Tk(C) is the sum of the quadratic and cubic wave-wave interactions 
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as described in Part 1. However, since the present field is assumed to be isolated, the 
coupling coefficients in the interaction terms are somewhat different from those 
developed in Part 1 (see e.g. Watson & West 1975; West 1 9 8 1 ~ ) .  

Observations of the surface of the open ocean are not consistent with the 
instantaneous, deterministic properties of the surface predicted by (2.3). The data 
on the vertical displacement of the fluid and the surface velocity indicate that 
measurements of the surface properties at one space-time point are not sufficient to 
predict these same properties a t  a nearby space-time point. The consensus of opinion 
is that the water waves are most consistently represented by a stochastic nonlinear 
wavefield rather than one that is deterministic (see e.g. Kinsman 1965; Kitaigorodskii 
1970; Phillips 1977; West 1 9 8 1 ~ ) .  This difficulty in using (2.3) has usually been 
circumvented by assuming that the mode amplitudes Ck(t) are stochastic quantities. 
Hasselmann (1962, 1963) assumed the mode amplitudes to be Gaussian random 
variables providing a spatially homogeneous spectrum of gravity waves. Watson & 
West (1975), Willebrand (1975) and Alber (1978) made similar statistical assumptions 
for an inhomogeneous spectrum of gravity waves. The fluctuations in the turbulent 
wind field driving the water waves of course account in part for the fluctuations in 
the surface properties (see e.g. Phillips 1977; West & Seshadri 1981). However, here 
we are interested in the fluctuations attributable to the nonlinear interactions within 
the wave field itself in addition to those generated by external sources. 

Hers we propose a model in which the non-resonant interactions among the gravity 
waves act as a source of fluctuations in the evolution of the wave field. Such a model 
implies that there are at least two characteristic timescales in the equation of motion ; 
the timescale for the fluctuations and the much longer timescale for the average or 
macroscopic development of the wave field. The Hamiltonian (2.1) has two distinct 
perturbation contributions; one from resonant and the other from non-resonant 
interactions. The timescale for energy transfer to a k-wave through a resonant 
interaction is roughly of the order of I$ x l / o , E 2 .  The timescale for the periodic 
transfer of energy in and out of the k-wave through a non-resonant interaction is of 
the order 7 i  - l /o ,~.  Thus 7i x €4, where E is a measure of the surface slope, and in 
the deep ocean E < 0.05, indicating that the variations in the mode amplitudes due 
to the non-resonant interactions are an order of magnitude more rapid than those 
due to resonant terms. 

If one were to attempt to integrate the equations of motion (2.3) directly, one would 
encounter the same problems of resolution usually associated with turbulent fluid 
flow. The separation in space- and timescales, in addition to their theoretical 
difficulties, make the calculations extremely expensive. We therefore elect to model 
the dynamics of the gravity-wave field by generalizing the concept of a test wave 
used successfully by Pomphrey et al. (1980) to describe the relaxation of a test wave 
in an equilibrated field of internal waves. In that model the test wave can only 
interact singly with the waves in the ambient fie1d.t Here, to mimic the effect of the 
timescale separation, we assume that the average properties of the surface-wave field 
can be described by n resonantly interacting test waves linearly coupled to a field 
on non-resonantly interacting modes. The rapid internal fluctuations in (2.3) are 
replaced by an external fluctuating flux. We refer to this partitioning of effects as 
a resonant test-field model (RTF) and we adopt the pragmatic point of view that its 
justification will be determined by its utility. 

t See the conference proceedings edited by West (1981b) for a critique of this model used to 
describe the dynamics of internal waves. 
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The RTF model represents a broadband spectrum of surface waves by two distinct 
wave fields, i.e. the set {ck(t)} is separated into the waves {Ak(t)) and {Bv(t)}. The 
ambient wave field {Bv(t)) is an equilibrated spectrum of waves that  interact 
non-resonantly among themselves and couple linearly to a second field of waves 
{Ak(t)}. This second field has a discrete spectrum of waves that interact resonantly 
with each other and experience the ambient waves as a source of additive fluctuations. 
The mean value of these fluctuations determines the average coupling between the 
two wave fields. 

The total Hamiltonian has the form 

Hg = H R ( A  ) + Ha(B) + 9 B). (2.4) 

The quantity H R ( A )  consists of the resonant test waves and can be written 

where VR is the nonlinear resonant-interaction potential. The Hamiltonian for the 
non-interacting ambient waves and the coupling between these waves and the RTF 
waves is 

Ha+HaR = Z.w,[Bv+iGv(A,A*)][B,*-iG,*(A,A*)], 

where G,(A,A*) is a function describing the modulation of the ambient wave field 
by the RTF waves. 

Hamiltons equations of motion for this partitioned system replaces (2.2) with 

(2.6) 
V 

for the ambient waves, and 

for the RTF waves. Using the Hamiltonian (2.4)-(2.6) the equations of motion for 
the ambient waves are 

and those for the RTF waves are 

Bv+iw,Bv = uyGV(A,A*), (2.9) 

Taken together, (2.9) and (2.10) constitute a feedback system between the two wave 
fields. West ( 1 9 8 2 ~ )  has constructed a description of the evolution of the resonant 
test field by solving (2.9) and using this exact solution to eliminate the dependence 
of (2.10) on the ambient field variables. 

We choose for our model a linear modulation of the ambient waves by writing 

G, = z rvp A ~ ,  
P 

(2.11) 

where rvp is a complex coupling coefficient. With this choice of G,, West ( 1 9 8 2 ~ )  has 
shown that for an ensemble of initial states of the ambient waves in equilibrium 
configurations characterized by the distribution 

r 
(2.12) 

c v  J 
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(with the RTF variables held fixed at time t = 0) (2.10) reduces in the Markov limit 
to 

(2.13) 

Equation (2.13) is the R T F  equation of motion in the Markov approximation with 
the fluctuating flux # ( t )  defined by 

f f ( t )  = Z I'&w,[B,(O) + iG,(A, O)] e-iwpt. (2.14) 

Because the distribution of initial states (2.12) is a multivariate Gaussian in the 
quantity [B,(O) + iG,(A,O)] (cf. (2.6)), the fluctuations (2.14) are zero-centred and in 
the present approximation are delta-correlated in time. 

The coupling of the R T F  to the ambient wave field has modified the original 
Hamiltonian equation in three ways: ( I )  there is a zero-centred Gaussian fluctuating 
fluxff(t) driving the wave field; (2) the Hamiltonian character of the system is lost 
owing to  the dissipative flux hk of action (energy) to the ambient waves; and (3) there 
is a modification of the nonlinear interactions due to a back-reaction of the ambient 
waves to  the nonlinear interactions among the test waves. 

It is now a simple matter to  include the effect of the air flow generating a field of 
water waves by modifying (2.13) to incorporate a linear coupling between the wind 
and the ocean surface. Introducing the Miles (1957) air-sea coupling parameter Pk, 
which models the average in-phase coupling of the air flow to the fluid surface, and 
Phillips's (1957) incoherent fluctuations in the pressure field (see e.g. Part l) ,  

v 

(2.15) 

where pk( t )  is the Fourier transform of the fluctuating pressure field a t  the sea surface, 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Equation (2.16) is the nonlinear Langevin equation modelling the evolution of the 
gravity-wave field used in the remainder of this work. 

To determine the properties of the solution to  (2.16), the full statistics of the 
stochastic driverfk(t) must be given. The mean value offk(t) is zero, 

fko = 0, (2.20a) 

since that off is zero by construction and that o f p  is zero by hypothesis. The second 
moments offk(t) are given by 

fr(t)f$*(t-7) = 2 0 r  $r(T)  8kk-k,, fp(t)fr(t-7) % 0, (2.20 b )  

(2.20 c) 

fF(t)f$*(t-T) =o, (2.20 d )  

where Dr is the spectrum of fluctuations in the air flow and $r(7) is the correlation 

fkN(t)ffl*(t-7) =2Dk N N  $k (7)  8kk--k,, fF(t)fkN(t-7) % 0, 
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of these fluctuations over a time interval 7. A similar interpretation applies to DF 
and #(T). Also the fluctuating flux fp in the wave field is assumed to be statistically 
independent of the fluctuations fr in the air flow, both of which are statistically 
homogeneous. For tractability we assume that the higher-order cumulants (indicated 
by a double overbar) O f f k ( t )  are zero, 

so that f k ( t )  is a Gaussian random process, i.e. it  is the sum of two such processes fr 
and f p .  Considerable simplification results from treating the ambient wave interactions 
as delta-correlated in time, independent of spatial scale, i.e. 

Am) z5 W ) .  (2.21) 

The assumptions on the statistical properties of the fluctuating function f k ( t )  given 
by (2.20) and (2.21) specify a Markov process. The response of the wave field to these 
fluctuations is determined by (2.16), which constitutes a set of nonlinear stochastic rate 
equations for the resonant test-field model of the gravity-wave mode amplitudes. The 
solutiw.1 to such a set of stochastic equations is obtained either by direct integration 
(prohibitively difficult for water-wave systems with many waves) or from the 
two-point probability density function describing an ensemble of possible paths of 
evolution realizable by the test system in phase space. We assume that the response 
of the test field to the fluctuations can be satisfactorily described by a Markov process, 
i.e. that  all the statistical information about the field is contained in the two-point 
probability density. Also we do not assume the form for the two-point probability 
density, but rather determine its equation of evolution and deduce its form from the 
properties of the exact solution to this equation. 

3. The Fokker-Planck equation 
The equation of evolution (2.16) describes the development of the set of dynamic 

variables A(t)  E {Ak(t)} for a particular realization of the set of fluctuations I f k ( t ) } .  

One can define a phase space T(a) for the dynamical vector A(t )  by the values u that  
the vector can assume. For each realization of the additive fluctuations Ifk( t )}  there 
corresponds a unique trajectory in this phase space which describes the evolution of 
the water wave field. A large number of realizations offlt) defines a corresponding 
ensemble of trajectories in the phase space. This ensemble of test-wave fields can be 
described by a two-time-point probability density which determinesall the information 
that can be experimentally known about the wave field when the process is Markov. 
In  this section we construct the equation of evolution for P(u,t(ao),  where 
P(a, tla,)dT(a) is the probability that A( t )  has a value in the interval (u ,u+da)  at 
time t given an initial value a,, and dT(a) is a differential volume element of phase 
space. 

For zero-centred Gaussian fluctuations, delta-correlated in time, the phase-space 
equation of evolution for the two-point probability density can be shown by standard 
arguments (see e.g. Lax 1966b, van Kampen 1976, Lindenberg et al. 1983) to be the 
Fokker-Planckequation. I n  terms ofthe complex mode amplitudes theFokker-Planck 
equation corresponding to (2.16) is 
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where H R  is the RTF Hamiltonian given by (2.5), the diffusion coefficient is 

and 7,(k) is the correlation time of a fluctuation of wavelength 2n/k in the pressure 
field, i.e. 00 

(3.3) Tc(k) = 2 J $F(7)d7. 
0 

The above approximations are in the same spirit as those made in Part 1,  except that 
we are now concerned with the exact effect of the wave-wave interactions on the 
probability density. 

3.1. The steady-state probability density 

The first question of interest is whether the Fokker-Planck equation specifies a 
physically reasonable steady state for the resonant test-field model. Such a state is 
established a t  late times when the energy flux into a spectral region from the wind 
field and from the wave-wave interactions is balanced by the energy flux out of the 
region by wave-wave interactions and dissipation. The steady-state probability 
density &,(a) = limt+OO P(a, tla,,) describing this situation is independent of the initial 
configuration of the wave field and is independent of time, i.e. 

The steady-state solution to the Fokker-Planck equation (3.1) then satisfies the 

An exact solution to (3.5) of the form 

exists, where z is the partition function, { B k )  is a set of as-yet unknown parameters 
and Qk(u) is given by 

& k ( a )  w k a k a $ +  x vepakaiaga,*. (3.7) 
Imp 

The coupling coefficients Vzp  in (3.7) are given by the four-wave interaction strengths 
in the Hamiltonian ( 2 . 5 ) .  In fact Qk(u) is analogous to a single 'particle' energy 
including the energy due to interactions and is such that the total energy of the 

(3.8) resonant test field of waves is H ,  = 2 ~ ~ ( ~ 1 .  

The algebraic details showing that (3.6) is indeed a solution of (3.5) are given in West 
(1  9824.  

If each of the parameters pk in the set were equal to the same k-independent 
constant @, then the solution (3.6) would become 

k 

P,,(a) = 2-l e--PHR. (3.9) 

Equation (3.9) is a canonical distribution for the RTF, with /3 interpreted as the scalar 
temperature characterizing the ambient waves, i.e. the 'heat bath'. This situation 
is analogous to the classical statistical-mechanical description of a many-body 
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system. However, the choice of a single temperature ,8 is not consistent with the 
present dynamic equations. To verify this we observe that a condition on the 
distribution (3.6) being the solution to (3.5) is that the parameters satisfy the equality 

(3.10) 

where AR(k) is the real part of A(k). I n  addition to  (3.10) we know that, for an 
asymptotic steady state to be established, a balance between the energy supplied to 
a spectral interval of RTF waves by the fluctuations must be balanced by the energy 
being dissipated in that spectral interval. Thus by multiplying (3.5) on the left by 
lak12 and integrating over all of phase space, we obtain the fluctuation-dissipation 

which together with (3.10) yields 

(3.11) 

(3.12) 

as the k-dependent temperature. Therefore, using the probability density (3.6) to  
evaluate the steady-state spectrum (3.12), we obtain the implicit relation for the p's: 

- = 2-l dr(a) W&kI2+ V g a $ a , * U I U m ]  eXp{-zpq&,(a)}. (3.13) 
p k  J [ Imp 4 

The determination of P k  from this self-consistency relation is a familiar problem from 
statistical mechanics. The solution to such problems usually require expanding the 
integral in (3.13) to  obtain an infinite sum oflinked-clusterdiagrams; the determination 
of the energy spectrum for the RTF waves is no exception. An expression formally 

(3.15) - = - -1n2, 
1 equivalent to  (3.13) is a 

p k  a p k  

so that the n-wave partition function 2 completely determines { p k } .  

3.2. The steudy-state spectral density 

Although we cannot integrate (3.12) in general, we can approximate the true value 
of p k  by restricting the integral to a weighted self-interaction of the test k-wave. For 
this single wave the weight of the interaction is zero, therefore to account in part 
for the interactions that are being omitted we weight the diagonal interaction 
strength V,( 3 7;;) in the Hamiltonian (2.5) by an element of volume ah2, where a 
is a constant, and assume V, is radially symmetric. Then by introducing the polar 
coordinates ( J k ,  O k ) ,  

ak = Ji e-iek, (3.14) 

and integrating the restricted form of (3.13) over all the RTF waves except k, we 

(3.15) 
obtain 1 a 

In 2k ,  - N - _  

p k  a p k  

where the single-mode partition function is 

(3.16) 
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To evaluate (3.15) we expand the interaction terms in (3.16) to obtain 

(3.17) 

(3.18) 

Substituting (3.18) into (3.15) and taking the indicated derivative, one obtains from 
the m = 0 , 1 , 2  terms the relation 

and from (3.13) the spectral density 

For deep-water gravity waves the interaction strength is Vk - k3,  so that 

and the energy-spectral density is given by 

( ' a k 1 2 ) s s  - k-4 gravity waves. 
W k I k  

1Y,s(k) = 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The spectrum (3.22) has also been obtained by Phillips (1977), using a scaling 
argument, and by West ( 1 9 8 2 ~ ) .  

3.3. Approach to the steady state 
The determination of the steady-state energy-spectral density (3.22) is quite en- 
couraging as it indicates that  the asymptotic properties of the RTF waves are reason- 
able. The question remains as to  how the field approaches this state in time. To 
answer this question we consider the transport equation for the non-equilibrium 
spectral density. One of the more recent discussions of this equation has been given 
by Longuet-Higgins (1976) for a narrow-spectrum nonlinear wave. The transport 
equation he obtains is based on a random-phase argument, and in the limit where 
the self-interaction strength becomes a constant i t  reduces to  the cubic integro- 
differential equation obtained by Hasselmann (1962, 1963). This transport equation 
has the limitation that its steady-state solution is unphysical, i.e. the energy of the 
steady state becomes either negative or infinite in the continuum limit. To avoid this 
unphysical result we do not rely on the random-phase arguments of Longuet-Higgins, 
nor on the quasi-Gaussian assumption of Hasselmann, but instead we construct the 
transport equations directly from the Fokker-Planck equation (3.1). 

We introduce the average quantity 

Nk(t) ( J k  ; t ) ,  (3.23) 

where the average in (3.23) is taken with respect to the solution to the Fokker-Planck 
equation (3.1). The transport equation for this quantity is then determined using 

ap 
= j a k  a;% (a,  tla,) dr(a).  

at 
(3.24) 
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Introducing (3.1) into (3.24) and integrating by parts yields the exact transport 
equation 

(3.25) 

The fourth-order moment on the right-hand side of (3.25) must be approximated 
because the time-dependent probability density is not known. In particular, one 
might here apply the argument developed by Longuet-Higgins (1976). If this is done 
one obtains the cubic terms in Hasselmann’s transport equation for the gravity-wave 
field. Unlike these earlier expressions the resulting transport equation (3.25) is 
irreversible owing to the explicit dependence on the decay parameter h,(k) and the 
energy flux Dk. This mechanism accounts for the replacement of the unphysical 
steady-state spectrum obtained earlier by the physical result (3.22) obtained as the 
steady-state solution to (3.25) in this approximation. 

4. Discussion and conclusions 
We have used a mode-coupled representation of the nonlinear water-wave field to 

model the solution of a broadband spectrum of gravity waves. The reversible 
Hamiltonian form of the equations of motion are replaced by a Markovian resonant 
test-wave model in which the non-resonant wave interactions are assumed to be well 
represented by Gaussian flux of action, a dissipative current and a modification in 
the interaction strength among the RTF waves. A linear model of the air-sea coupling 
is also included. The dynamics of the RTF waves are discussed in terms of the 
evolution of the probability density in the phase space of the test-wave field. In the 
Markov limit the phase-space equation of evolution is determined to be the 
Fokker-Planck equation, which yields the non-Gaussian steady-state distribution 

This distribution determines the approximate energy-spectral density to be k-4. 
The relaxation of the RTF toward the statistical steady state (4.1) is a consequence 

of the irreversibility of the Fokker-Planck equation. In the spirit of Boltzmann we 
introduce an H-function w, t)  d r ( a )  P(a, t)  In - 

<,(a) ’ 

where the dependence of P(a,t) on initial conditions has been suppressed and the 
function H+O as t+co and the RTF approaches its statistical steady state. To 
determine the approach to the steady state we first rewrite the Fokker-Planck 
equation (3.1) as 

where we have used (4.1) and the expressions (3.10) and (3.6). The time derivative 
of the H-function (4.2) can then be written, using (4.3), as 

(4.4) 
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where 

It is apparent from (4.4) that  for finite times 

and that d H  
lim - = 0. 
t+a, dt 

Thus the functional H[P(a, t)] increases monotonically in time until i t  reaches its 
steady-state value of zero, after which it remains constant (see e.g. Grabert & 
Weidlich 1980). 

Irreversibility enters into the description of a general physical system in the 
derivation of the Boltzmann equation from the Liouville equation through the 
introduction of a probability hypothesis. Pawula (1967) has proven that, if any even 
moment (greater than the second) of a process vanishes, then the Fokker-Planck 
equation is the only logically consistent differential representation of the linear 
Boltzmann equation. Thus there exists a relation between the Markov property of 
the RTF necessary to derive the Fokker-Planck representation and the Stosszahl- 
ansatz necessary to make the Boltzmann equation irreversible. We can gain some 
insight into this relation by means of the following phase-space argument. 

The density of systems in the interval of phase space (a ,  a + da)  a t  time t is given 
by the phase-space distribution function pf(a, t ) .  The time rate of change of pf(a, t )  
determines how the ensemble of systems redistributes itself in phase space as a 
function of time. This change in time is determined by the equation of evolution for 
the dynamic variable A(t) ,  i.e. 

d 
-4) dt = 7T&),flt)l, (4.8) 

where we have written (2.16) in vector form and collected all the linear and nonlinear 
terms into the function T in (4.8). Note that the dependence of T on the rapidly 
varying forceJt) has been made explicit, and similarly we denote the solution to (4.8) 
for a particular realization ofJt) as A,(t). The phase-space distribution function is 
then given by n 

Pf@, t)  = S(n’(a-Af(t)) = ,rI %j-Akj , f ( t ) ) ’  (4.9) 
3-1 

indicating that the phase-space vector a has non-zero values only along the trajectory 
corresponding to the solution of (4.8) for a particularflt). It has been shown by a 
number of investigators (see e.g. Lax 1966b; Lindenberg et al. 1983) that the 
phase-space density function satisfies the equation 

(4.10) 
a a 
-ppf(a, at + & * { 7Ta,flt)l t )>  + C.C. = 0, 

which has the appearance of a Liouville equation for pf(a, t ) .  
The phase-space density function has a fine structure associated with the fluctuations 

At) and therefore it cannot be interpreted as a probability density even though i t  
satisfies (4.10). The probability density for the RTF waves is obtained from pf(a, t )  
by averaging over an ensemble of realizations offlt), i.e. 

P(a, tb,) = <pf(a , t ) ) .  (4.11) 
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This averaging procedure coarse-grains the reversible phase-space density function 
and the reversible equation of motion (4.10), to yield the probability density (4.11) 
and the Fokker-Planck equation (3.1). How one constructs (3.1) from (4.10) by this 
averaging procedure is fairly standard and may be found in a number of places (see 
e.g. Lindenberg et al. 1983). 

The above discussion does not pretend to be complete. In fact, the relation between 
reversible and irreversible behaviour in physical systems is still one of the great 
unsolved problems in statistical physics. My intention here has been to indicate the 
strategy followed in the development of the phenomenological RTF model and to 
suggest how one might go about providing a more fundamental justification. Also 
the fact that one is able to find a physically reasonable steady-state spectrum and 
a transport equation which describes the relaxation of the wave field to this steady 
state suggests that further development of the RTF model is justified. 

As a final point we reiterated the observation made in Q 1 that one cannot maintain 
both the Gaussian and nonlinear properties of the wave field if it is to be described 
by a Markov random process. So far we have relinquished Gaussianity in favour of 
nonlinearity and have obtained the nonlinear transport equation (3.25) to describe 
the evolution of the RTF. One could also adopt the philosophy used in Part 1 and 
include an average nonlinear interaction in the description so as to obtain a Gaussian 
wave field with effective parameters. This approach is more useful calculationally and 
results in a transport equation for the correlation matrix Q ( t )  = (aat ; t> of the form 

* + M Q ( t ) + Q ( t ) M t  = 2 0 ,  (4.12) 

where the matrix M is determined by applying the method of statistical linearization 
to the nonlinear-mode rate equations. The two-point probability density is a complex 
multivariate Gaussian in this approximation with a time-dependent mean, i.e. 
( a )  = ecMt Q,, and time-dependent correlations determined by (4.12). The transport 
equation corresponding to (3.25) is determined from the diagonal elements of Q ( t )  

(4.13) 
to be 

where the ‘dissipation rate’ yR(k,  t )  is now time-dependent. Further details on this 
model will be published elsewhere. This model is mentioned here in order to emphasize 
that a self-consistent description of the gravity-wave field can be developed which 
is based on a Markov random field with Gaussian statistics, but such a description 
has a transport equation of the form (4.13) and not (3.25). 

at 

a 
at 
- N k ( t )  + 2yR(k, t ,  N k ( t )  = zDk,  
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